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Abstract. In this paper, some basic results under various conditions
for φ-convex functions are investigated. We prove that, under special
hypotheses, every φ-convex function f is continuous on (a, b). More-
over, we introduce the notion of (φ, n)-convex functions.
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1. Introduction
The concept of convexity and its generalizations are important in applied
mathematics, mathematical economics and optimization theory.

Recently, several extensions have been considered for the classical convex
functions, such as pseudo-convex functions [3], strongly convex functions
[4, 6], h-convex functions [8], strongly h-convex functions [1, 5], E-convex
functions [9], E-quasi-convex functions [7].

Let I be an interval in R. Then the mapping f : I −→ R is called convex
if for all x, y ∈ I and λ ∈ [0, 1],
(1.1) f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Moreover, f is called affine if the equality in (1.1) hold.

Motivated by (1.1), the following generalization of convex functions was
introduced in [2].

Definition 1.1. Let φ : R×R −→ R be a bifunction. A function f : I −→ R
is called

(a) φ-convex, if for all x, y ∈ I and λ ∈ [0, 1],
f(λx+ (1− λ)y) ≤ f(y) + λφ(f(x), f(y)),

(b) φ-affine, if
f(λx+ (1− λ)y) = f(y) + λφ(f(x), f(y)), λ, x, y ∈ R.
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It is obvious that if φ(x, y) = x − y, then the above concepts coincide
with the classical definitions of convex and affine functions.

By [2, Example 2.2], for a convex function f we may find another function
φ different from φ(x, y) = x − y, such that f is φ-convex. Moreover, there
is a φ-convex function f which is not convex.

In [2], the authors investigated the Jensen and Hermite-Hadamard type
inequalities concerning for φ-convex functions.

In this paper, we generalize some basic results of convex functions to the
φ-convex functions. As a consequence we show that, under certain condition,
every φ-convex function f is continuous, and for each φ-affine map f from
R to R, the map x −→ φ(f(x), f(0)) is linear. Finally, we introduce the
notion of (φ, n)-convex functions.

2. φ-convex function

We commence with the following characterization of φ-convex function.

Theorem 2.1. Let f : (a, b) −→ R be a function. Then f is φ-convex if
and only if for all a < s < u < t < b,

(2.1) f(u)− f(s)

u− s
≤ φ(f(t), f(s))

t− s
.

Proof. Assume that f is φ-convex and take α = u−s
t−s . Then 0 < α < 1 and

u = αt+ (1− α)s. Therefore we get
f(u) = f(αt+ (1− α)s) ≤ f(s) + αφ(f(t), f(s)).

Hence
f(u)− f(s) ≤ u− s

t− s
φ(f(t), f(s)),

which impolies that
f(u)− f(s)

u− s
≤ φ(f(t), f(s))

t− s
.

For the converse let the inequality (2.1) holds for all a < s < u < t < b.
Let x, y ∈ (a, b) and x < y. Then for each x < z < y there exist 0 < α < 1
such that z = αy + (1− α)x. Since a < x < z < y < b, from (2.1) it follows
that

(2.2) f(αy + (1− α)x)− f(x)

αy + (1− α)x− x
≤ φ(f(y), f(x))

y − x
,

and hence
f(αy + (1− α)x) ≤ f(x) + αφ(f(y), f(x)),

for all x, y ∈ (a, b). Therefore f is φ-convex. □
Corollary 2.2. The function f : (a, b) −→ R is convex if and only if

f(u)− f(s)

u− s
≤ f(t)− f(s)

t− s
,
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for all a < s < u < t < b.

Lemma 2.3. Let f : (a, b) −→ R be a φ-convex function. If φ is bounded,
then so is f .

Proof. Let x, y ∈ (a, b) be fixed and x < y. Then for each x < z < y there
exist 0 < α < 1 such that z = αx+ (1− α)y. Put

M = max{f(x), f(y) + αφ(f(x), f(y))}.
Then
(2.3) f(z) = f(αx+ (1− α)y) ≤ f(y) + αφ(f(x), f(y)) ≤ M.

If r = z − x+y
2 , then

z = r +
x+ y

2
, w =

x+ y

2
− r

lies in (x, y), and x+y
2 = 1

2w + 1
2z. As f is φ-convex, we have

f(
x+ y

2
) = f(

1

2
w +

1

2
z) ≤ f(z) +

1

2
φ(f(w), f(z)) ≤ f(z) +

1

2
K.

for all x, y ∈ (a, b), where K is the upper bound of φ. Take m = f(x+y
2 )−1

2K.
Thus, for all z ∈ (x, y),

m ≤ f(z) ≤ M.

Therefore f is bounded on (x, y) and so it is bounded on (a, b). □
It is known that every convex function f : (a, b) −→ R is continuous. Now

we generalize it for φ-convex functions.

Theorem 2.4. Let f : (a, b) −→ R be a φ-convex function. If φ is bounded,
then f is continuous on [c, d] ⊂ (a, b).

Proof. Suppose x, y ∈ [c, d] and x < y. Let p, q be fixed number such that
a < q < c ≤ x < y ≤ d < p < b.

Since f is φ-convex, by Theorem 2.1 we have
f(y)− f(x)

y − x
≤ φ(f(p), f(x))

p− x
≤ K

p− d
.

On the other hand, from Lemma 2.3, m ≤ f(z) ≤ M , for each z ∈ (a, b).
Thus, m−M ≤ f(y)− f(x) and hence

m−M

p− q
≤ f(y)− f(x)

y − x
.

Now let α = |m−M
p−q |, β = | K

p−d | and take

N = max{α, β}.
Then

|f(y)− f(x)| ≤ N |y − x|.
Consequently, f is continuous on [c, d]. □



126 A. ZIVARI-KAZEMPOUR AND M. R. HADADI

The following example shows that every φ-convex function f on closed
interval [a, b] is not necessary continuous, even φ is bounded.

Example 2.5. Define φ : [0, 1] × [0, 1] −→ R by φ(x, y) = x − y and
f : [0, 1] −→ R by

f(x) =

{
x2 0 ≤ x < 1

2 x = 1

Then |φ(x, y)| ≤ 1 and hence φ is bounded. The mapping f is a φ-convex,
but it is not continuous.

Theorem 2.6. Let f : (a, b) −→ R be a φ-convex function. If for all
x, y ∈ R,

φ(x, y) ≤ x− y,

then f is continuous.

Proof. It follows from Theorem 2.1 and assumption that

f(u)− f(s) ≤ u− s

v − s
φ(f(v), f(s)) ≤ u− s

v − s
(f(v)− f(s)),

for all a < s < u < v < t < b. Let α = v−s
u−s and β = v−u

u−s . Then
(2.4) αf(u)− βf(s) ≤ f(v).

Since α = 1 + β, so from (2.4), we get
(2.5) f(u) + β(f(u)− f(s)) ≤ f(v).

On the other hand, by Theorem 2.1,

(2.6) f(v) ≤ f(u) +
v − u

t− u
φ(f(t), f(u)).

It follows from (2.5) and (2.6) that
f(u) + β(f(u)− f(s)) ≤ f(v)

≤ f(u) +
v − u

t− u
φ(f(t), f(u))

≤ f(u) +
v − u

t− u
(f(t)− f(u)).

Let {vn} be a sequence such that vn ≥ u and vn −→ u. Then by the above
inequality, we have

f(u) ≤ lim
n

f(vn) ≤ f(u).

Consequently, f(x) −→ f(u), where x −→ u+. Similarly, if x −→ u−, then
f(x) −→ f(u). Thus, f is continuous in u. This finishes the proof. □
Corollary 2.7. Suppose that f : (a, b) −→ R is a φ-convex function. If for
all x, y ∈ R,

φ(x, y) ≤ x− y,

then f satisfies the Lipschitz condition locally on (a, b).

Theorem 2.8. Every φ-affine mapping f : R −→ R is affine.
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Proof. Let f be φ-affine and µ ∈ R. Then
(2.7) f(µ) = f(µ+ (1− µ)0) = f(0) + µφ(f(1), f(0)).

Thus, for all λ, x, y ∈ R by (2.7), we obtain
f(λx+ (1− λ)y) = f(0) +

(
λx+ (1− λ)y

)
φ(f(1), f(0))

= λf(0) + (1− λ)f(0) +
(
λx+ (1− λ)y

)
φ(f(1), f(0))

= λ[f(0) + xφ(f(1), f(0))] + (1− λ)[f(0) + yφ(f(1), f(0))]

= λf(x) + (1− λ)f(y).

Therefore
f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y),

and hence f is affine. □
Theorem 2.9. If f : R −→ R is φ-affine and φ is linear in first variable,
then the map T : R −→ R defined by T (x) = φ(f(x), f(0)) is linear.

Proof. Suppose that f is φ-affine, then
f(λx+ (1− λ)y) = f(y) + λφ(f(x), f(y)),

for all λ, x, y ∈ R. Setting x = y = 0, we get φ(f(0), f(0)) = 0. On the
other hand, by Theorem 2.8, f is affine. Now for all λ, x ∈ R, we have

T (λx) = φ(f(λx), f(0))

= φ
(
f(λx+ (1− λ)0), f(0)

)
= φ

(
λf(x) + (1− λ)f(0), f(0)

)
= λφ(f(x), f(0)) + (1− λ)φ(f(0), f(0)

= λφ(f(x), f(0))

= λT (x).

Therefore for all λ, x ∈ R,
(2.8) T (λx) = λT (x).

From (2.8), we have
1

2
T (x+ y) = T (

x+ y

2
)

= φ(f(
x+ y

2
), f(0))

= φ
(1
2
f(x) +

1

2
f(y), f(0)

)
=

1

2
φ(f(x), f(0)) +

1

2
φ(f(y), f(0))

=
1

2
T (x) +

1

2
T (y).

Thus, T (x+ y) = T (x) + T (y) and hence T is additive. Consequently, T is
linear. □
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We mention that in Theorem 2.9, if the assumption φ-affine is replace
by φ-convex, then the conclusion is not true, in general. For example let
f(x) = x2 and φ(x, y) = x(1 + 2y), for all x, y ≥ 0. Then φ is linear in first
variable, f is φ-convex but it is not φ-affine. However, T (x) = φ(f(x), f(0))
is not linear.

Corollary 2.10. If f : R −→ R is affine, then T : R −→ R defined by
T (x) = f(x)− f(0) is linear.

Definition 2.11. Let n ∈ N. We say that the function f : R −→ R is
(φ, n)-convex, if

f(λxn + (1− λ)yn) ≤ f(yn) + λφ(f(xn), f(yn)),

for all x, y ∈ R and λ ∈ [0, 1].

Clearly, (φ, 1)-convex function is φ-convex and every φ-convex function
f : R −→ R is (φ, n)-convex, but the converse is fails, in general. The
following example illustrate this fact.

Example 2.12. Let f : R −→ R be defined by f(x) = x and consider
φ(x, y) = x+ y. Then for all x, y ∈ R and λ ∈ [0, 1] we have

f(λx2 + (1− λ)y2) = λx2 + (1− λ)y2

= y2 + λ(x2 − y2)

≤ y2 + λ(x2 + y2)

= f(y2) + λφ(f(x2), f(y2)).

Thus, f is (φ, 2)-convex function, but it is not φ-convex.

Proposition 2.13. Let f : R −→ R be a (φ, n)-convex, and let A be a
convex subset of {xn : x ∈ R}. Then the restriction of f to A is φ-convex.

Proof. Let a, b ∈ A, then there exists x, y ∈ R such that a = xn and b = yn.
Suppose that g is the restriction of f to A. Then

g(λa+ (1− λ)b) = f(λa+ (1− λ)b)

= f(λxn + (1− λ)yn)

≤ f(yn) + λφ(f(xn), f(yn))

= f(b) + λφ(f(a), f(b))

= g(b) + λφ(g(a), g(b)).

Therefore g is φ-convex on A. □
Corollary 2.14. Let f : R −→ R be a (φ, n)-convex. Then the restriction
of f to [0, 1] is φ-convex.
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